Сенная палочка

Мукор сапрофит или паразит

Существует вид грибов, питающиеся мёртвыми останками, а есть те, кто потребляет живые организмы. Грибы сапрофиты – кормятся остатками зверей или растений. В мире грибов они являются травоядными или падальщиками.

Сапрофиты

Сапрофитами бывают и бактерии, и грибы. Бактерии, принадлежащие этому виду, питаются органическими веществами умерших организмов. К виду сапротрофы относятся молочнокислые, почвенные, маслянокислые бактерии и другие. К этой разновидности грибов относятся организмы, развивающиеся на гумусе растительного происхождения. Их можно поделить на две группы — съедобные и несъедобные.

Пригодные для еды

Примеры грибов, которые не принесут вред здоровью:

  • шампиньоны;
  • дождевики;
  • зонтики;
  • сморчки;
  • навозники;
  • строчки;
  • цистодермы;
  • паутинники.

Непригодные для еды

Эти организмы нельзя употреблять в пищу:

  • свинушки;
  • гельвеллы;
  • бледные поганки;
  • весенние поганки;
  • белые поганки.

Строение и способы питания

К виду сапрофиты или сапротрофы принадлежат грибы, которые состоят из множества спор. Они разлетаются на окружающие растения или останки животных, способствуя размножению грибницы. Примеры растительности, на которых любят оседать организмы:

  • шишки;
  • ветки;
  • пеньки;
  • стебли однолетних трав;
  • хвоя и листва;
  • перья и рога.

Далеко не каждый из сапрофитов или, как ещё их называют – редуценты, питаются субстратами. Так, для летнего опенка лучшая еда — остатки лиственных деревьев. Опята ложные питаются только хвоей. А вот белый навозник чудесно существует в местах, сильно насыщенных азотом.

Какие бывают грибы сапрофиты

От пеницилла портятся продукты питания

Многообразие сапрофитов удивляет. Названия самых известных:

  1. Мукор. Это плесневый гриб из рода низших. Класс Зигомицеты. Он — аэробный, то есть его существования невозможно без кислорода. Мицелий Мукора состоит из множества ядер. Все представители этого рода гнездятся в верхних пластах грунта, лошадином навозе, продуктах питания и органических остатках. Тело данного организма похоже на тонкие ниточки – это грибница. На ответвлениях или гифах грибницы вырастают маленькие чёрные головки, в которых находятся споры. Питается мукор органикой. Гриб-мусорщик, так его ещё называют, т. к. он не оставляет отходов. Появится мукор, может, и на живом, но больном организме. Когда тот погибает – все останки перерабатываются.
  2. Пеницилл. Эти грибы не являются редкостью в природе. Они относятся к роду несовершенных. Особенную ценность представляет зелёная кистевидная плесень – пеницилл золотистый. Из него производят пенициллин. Обитает пеницилл в почве. Строение похоже на строение аспергилла. Вегетативный мицелий ветвистый, бесцветный и многоклеточный. Этим грибы пеницилл отличаются от мукора – у последнего грибница простейшая. Гифы организма погружаются в субстрат или располагаются на его поверхности. Прямостоящие конидиеносцы образовывают кисточки, которые несут цепочки со спорами. Эти цепочки имеют от одного до трёх ярусов, также могут быть несимметричными. Размножаются эти грибы спорами. Насыщается, всасывая органические вещества, поэтому они паразиты. От пеницилла продукты питания портятся. Также он участвует в разложении тканей живых организмов.
  3. Аспергилл. Плесневый гриб из класса высших аэробных. Род этих организмов насчитывает сотни видов. Все они достаточно распространены и растут в разных климатических поясах. Они приживаются на различных субстратах и создают пушистые колонии белого цвета. Но со временем цвет меняется. Аспергилл имеет сильный мицелий и перегородки. Размножается он, как и остальные сапротрофы, спорами. Живет организм в почве, которая содержит много кислорода. Организм появляется как плесень сверху субстрата. Именно этот гриб – опасен. Он поражает продукты, в структуру которых входит крахмал. Прорастает организм внутри и на поверхности дерева.

В чем разница сапрофитов, симбионтов и паразитов

Существуют грибы паразиты, сапрофиты и симбионты. Различие заключается в способе питания.

Предпочитают вещества мёртвых организмов. Это такие бактерии, как кишечная палочка или отдельные виды грибов – пеницилл. Сапрофиты или сапротрофы, являются своего рода санитарами в природе, потому как их главная функция – перерабатывать отходы.

Симбионты

Это организмы, вступающие в симбиоз с другими видами, и получают от этого взаимную или одностороннюю выгоду. Ученые установили – в каждой симбиотической паре присутствуют водоросли. Участвуют в таких взаимоотношениях не только водные, но и сухопутные организмы. Симбионты создают выгодную связь друг с другом, с грибами, бактериями и многоклеточными организмами. Но число водорослей, восприимчивых к симбиозу небольшое.

Паразиты

Существуют за счёт живых организмов, питаясь их органикой или живой плотью. Практически всю свою жизнь паразиты проводят в организме носителя. Они не только уменьшают количество питательных веществ, но и отравляют организм–носитель.

Интересно, что сапрофитный и паразитарный образ жизни ведут и патогенные грибы. Это микроорганизмы разнообразного происхождения обитают в разных местах и условиях. Такие организмы играют важную роль в науке, поэтому их специально выращивают в искусственной среде для изучения. Есть селективный тип среды и неселективный:

  1. Неселективный. Самый популярный вид – агар Сабуро. Он отличается высоким содержанием углеводов. Часто среду преображают, добавляя антибиотики, циклогексимид или хлоргексидин. А также для выделения привередливых патогенов, среду обогащают 5–10% КА, добавляя сердечный и мозговой экстракт.
  2. Селективные. Такую среду получают из неселективного субстрата, добавляя пенициллин, стрептомицин и левомицетин.

Грибы-сапрофиты — это особые организмы, питающиеся оставшимся частями растений или животных. К категории сапрофитов в настоящее время относится большое количество грибов. Они питаются веществами, которые самостоятельно извлекают из останков. В качестве субстрата являются следующие останки:

  • перегной;
  • солома;
  • ветки, пни;
  • стволы;
  • перья, рога;
  • древесный уголь и другие.

Но не все сапрофиты предпочитают разнообразные субстраты. Например, известный опенок летний в основном питается останками лиственных деревьев. Ложные опята предпочитают только хвойные деревья. Другие разновидности, например, навозник белый или ризопогон желтоватый, отлично живут на территории, где существует большая концентрация азота.

Если для природы они являются полезными организмами, то для человека — нет. Эти грибы способны появиться на продуктах питания, которые после этого нельзя больше употреблять.

Ризопогон желтоватый живет на территории с избытком азота

Примеры организмов сапрофитов

Сапрофиты питаются отмершими организмами. Результат их деятельности основан на гниении и распаде. К ярким представителям сапрофитов относятся следующие представители:

Мукор

Данный представитель относится к родовой ветке низших плесневых грибов класса зигомицетов. В общей сложности класс включает в себя 60 видов разнообразных грибов. Встретить их можно в верхнем слое земли, они могут развиваться на еде и органических частях. Некоторое количество мукора способно вызвать заболевание не только у животного, но и у человека.

Но есть ряд грибов, которые предназначены для применения в производстве антибиотиков или в качестве средства для закваски. В производстве применяются только те мукоровые грибы, которые имеют высокую ферментативную активность.

Размножение мукоровых грибов бывает бесполое и половое. В бесполом размножении оболочка зрелого гриба быстро и просто растворяется от влаги, при этом наружу выходят несколько тысяч спор. В половом виде размножения принимают участие две ветки: гомоталличные и гетероталличные. Они соединяются друг с другом в зиготу, после чего начинает прорастать гифа с зародышевым спорангием. В качестве закваски люди применяют мукор китайский и мукор улитковидный. Многие называют эти грибы китайскими дрожжами.

При помощи таких дрожжей люди могут получать этанол из картошки.

Мукор может вызвать заболевания у людей и животных

Аспергилл

Данные грибы относятся к разряду грибов-сапрофитов. Они исходят из рода высших аэробных плесневых грибов. В состав класса входит несколько сотен разновидностей. Все разновидности широко распространены в разнообразных климатических поясах. Аспергиллы могут отлично приспосабливаться к разнообразным субстратам, при этом образуют пушистые колонии. Первоначально данные колонии имеют белый оттенок. Но в дальнейшем оттенок изменяется в зависимости от прогрессирования вида гриба.

Что касается мицелия гриба, то он довольно силен. Имеются в наличии перегородки. Как и многие сапрофиты, аспергиллы осуществляют размножение при помощи своеобразных спор. Аналогично мукору аспергилл может размножаться как бесполым, так и половым путем. В отличие от других грибов данный классовый представитель не имеет половой стадии развития. После того как появилась способность определять ДНК, ученые выяснили, что аспергилл близкородственен к аскомицетам.

Найти аспергилл можно в почвах, где имеется большое содержание кислорода. В основном он прорастает в виде плесени на верхней части субстрата. Разновидности данного сапрофита представляют собой опасные заражающие организмы, поражающие главным образом продукты питания, в составе которых имеется крахмал. Они также могут прорастать на поверхности или внутри дерева или растения.

Аспергилл — высший аэробный плесневый гриб

Пеницилл

Плесневого типа гриб образуется на еде и портит ее. В основном данный представитель живет в почве. На разнообразных субстратных поверхностях можно увидеть зеленого или голубого оттенка плесневой налет, характерный для пеницилла. Если рассматривать строение гриба, то вы обнаружите сходство с аспергиллом, который тоже имеет отношение к плесневым грибам.

Впервые его полезные свойства обнаружил Александр Флемминг, что привело к производству первого антибиотика — пенициллина.

Мицелий пеницилла имеет ветвящееся строение, оттенок прозрачный. В состав мицелия входит огромное количество клеток. Он имеет отличительную особенность от другого сапрофита мукора. Дело в том, что пеницилл обладает многоклеточной грибницей, а мукор имеет всего одноклеточную структуру. Пеницилл располагается либо на поверхности субстрата, либо внутри умершего организма. Размножение осуществляется при помощи спор.

Пеницилл используется при производстве антибиотика

Жизнедеятельность каждого растения или животного когда-нибудь заканчивается. В лесу постоянно можно встретить упавшие листья, ветки, солому, стволы, перья и другие вещества. Именно сапрофиты играют главную роль в очищении леса. Грибы перерабатывают умершие останки, разлагают их. Поэтому они очень важны для нормального круговорота веществ в природе. В основном большую часть работы выполняют высшие сапрофиты, которые имеют в своей структуре так называемые мицелии (грибницы). Но и низшие грибы также способны очистить почву от негативных веществ.

Установите соответствие между примерами организмов и способами гетеротрофного питания: к каждой позиции, данной в первом столбце, подберите соответствующую позицию из второго столбца.

ПРИМЕР СПОСОБ

Б. болгарская палочка

В. туберкулёзная палочка

Д. сенная палочка

2. паразиты

Запишите в таблицу выбранные цифры под соответствующими буквами.

А Б В Г Д

Сапротрофы — гетеротрофные организмы, использующие для питания органические соединения мёртвых тел или выделения (экскременты) животных. Участвуя в минерализации органических соединений, сапротрофы составляют важное звено в биологическом круговороте веществ и энергии. К сапротрофам относятся бактерии, актиномицеты, грибы.

Па­ра­зи­ты — гетеротрофные организмы, использующие для питания органические соединения живых организмов.

1. сапротрофы: А. мукор; Б. болгарская палочка; Д. сенная палочка

2. паразиты: В. туберкулёзная палочка; Г. спорынья

Эффекты активных метаболитов Bacillus subtilis в пробиотическом продукте нового поколения

Характеристика Bacillus subtilis

Bacillus subtilis является одним из представителей вида аэробных спорообразующих почвенных бактерий, положительных по Граму. В связи с тем, что для получения накопительных культур данного микроорганизма используют сенный экстракт, второе название Bacillus subtilis — сенная палочка. Описание данной бактерии впервые представил знаменитый немецкий естествоиспытатель Христиан Готфрид Эренберг в 1835 г., однако в его трактовке этот микроорганизм носил название Vibrio subtilis. А свое современное название Bacillus subtilis он получил уже в 1872 г. На сегодняшний день это один из наиболее известных и тщательно изученных представителей рода бацилл. Большинство бактерий рода Bacillus (включая B. subtilis) неопасны
для человека и широко распространены в окружающей среде. Их обнаруживают в почве, воде, воздухе и пищевых продуктах (пшеница, другие зерновые культуры, хлебобулочные изделия, соевые продукты, цельное мясо, сырое и пастеризованное молоко).
Как следствие, они постоянно попадают в желудочно-кишечный тракт (ЖКТ) и дыхательные пути, засевая эти отделы. Количество бацилл в кишечнике может достигать 107 КОЕ/г, что сравнимо с аналогичным показателем у Lactobacillus. В связи с этим ряд исследователей рассматривают бактерии рода Bacillus как один из доминирующих компонентов нормальной микрофлоры кишечника . Согласно санитарно-эпидемиологическому правилу СП 1.3.2322-08 «Безопасность работы с микроорганизмами III–IV групп патогенности (опасности) и возбудителями паразитарных болезней» (приложение № 1), эти бактерии не относятся к патогенным для человека микроорганизмам . Отсутствие патогенности у штаммов Bacillus subtilis и их метаболитов, которые позволяют считать их наиболее перспективными в качестве основы пробиотиков нового поколения, дало основание для присвоения им Управлением по контролю качества продовольственных и лекарственных средств США статуса GRAS (generally regarded as safe) — безопасных организмов .
Среди самых важных биохимических свойств, присущих Bacillus subtilis, следует выделить способность закисления среды, а также продуцирования антибиотиков. Именно благодаря этим своим свойствам сенная палочка из рода бацилл способна уменьшать воздействие различных условно-патогенных, а также патогенных микроорганизмов. Bacillus subtilis — это антагонист для дрожжевых грибков, сальмонеллы, протея, стрептококков, стафилококков. Уникальность бактерии заключается в том, что 4–5% ее генома кодируют синтез разнообразных противомикробных веществ, охватывая практически все патогены, которые могут вызывать кишечные инфекции. В соответствии с опубликованными обзорами, к 2005 г. от разных штаммов B. subtilis было выделено 24 таких вещества, а к 2010 г. — 66, и перечень их продолжает расти . К другим важным свойствам Bacillus subtilis относятся: синтез витаминов, аминокислот и иммуноактивных факторов; активное продуцирование ферментов, способных удалять продукты гнилостного распада тканей.
По данным отечественных и зарубежных ученых, бактерии рода Bacillus характеризуются полиферментативными свойствами. Клетки бацилл включают набор ферментов различных классов, что обеспечивает им возможность существовать в разнообразных субстратах. Ферменты, обнаруженные у представителей рода Bacillus: оксидоредуктазы (L-лактатдегидрогеназа, нитратредуктаза); трансферазы (пируваткиназа, левансахараза, рибонуклеаза); гидролазы (аминопептидаза, субтилопептидаза, плазмин, ксиланаза, фосфодиэстераза, α-амилаза, дезоксирибонуклеаза, аргиназа, β-ацетилглюкозаминидаза, фосфотаза, мальтаза (α-глюкозидаза), эстераза, ламинариназа); лиазы (треониндегидратаза, пектатлиаза, аконитатгидратаза (аконитаза), кетозо-1-фосфатальдолаза (альдолаза) .

Кишечный микробиоценоз

Исследования последних 10–20 лет показали, что кишечные микроорганизмы (включая пробиотические штаммы) способны разрушать и метаболизировать сложные пищевые питательные вещества и эндогенные вещества (слюна, соединения желудочно-кишечного сока, эпителиальные клетки, мертвые микробные клетки и т. д.), что приводит к образованию биоактивных веществ с низкой молекулярной массой (LMW), которые могут быть локализованы как внутри, так и вне микробных клеток и обнаружены в содержимом кишечника или пройти через барьер кишечного эпителия. Эти соединения, полученные из пробиотических (симбиотических) микробов, образуют так называемый пробиотический метаболизм. Взаимодействуя с соответствующими прокариотическими и эукариотическими клеточными мишенями, эти биологически и фармакологически активные соединения могут контролировать многие генетические, эпигенетические и физиологические функции; биохимические и поведенческие реакции, а также внутри- и межсетевой обмен информацией. Некоторые комменсальные микробы, включая пробиотики, могут выделять различные сигнальные молекулы, способные модифицировать межбактериальную сигнализацию (закалку кворума) и подавлять экспрессию генов вирулентности в патогенах или стимулировать рост полезных местных кишечных микроорганизмов.

По нашему мнению, пробиотики, имеющиеся в продаже в настоящее время, следует рассматривать как первое поколение средств, направленных на коррекцию микроэкологических нарушений. Будущее развитие традиционных пробиотиков будет включать в себя усовершенство вание этого поколения посредством производства естественных метабиотиков (изготовленных на основе текущих пробиотических штаммов) и синтетических (или полусинтетических) метабиотиков, которые будут аналогами или улучшенными копиями натуральных биоактивных веществ, полученных симбиотическими микроорганизмами .

Преимущества метабиотиков

Метабиотиками называют препараты нового поколения, которые помогают кишечной микрофлоре правильно выполнять свою работу. Более точное определение этой группы было сформулировано профессоромБ.А. Шендеровым . Метабиотики являются структурными компонентами пробиотических микроорганизмов и/или их метаболитов, и/или сигнальных молекул с определенной (известной) химической структурой, которые способны оптимизировать специфичные для организма хозяина физиологические функции, регуляторные, метаболические и/или поведенческие реакции, связанные с деятельностью индигенной микробиоты организма хозяина. Они поддерживают полезные бактерии и изгоняют опасных и бесполезных чужаков — в этом смысле метабиотики похожи на пробиотики, только действуют намного эффективнее и притом никаких бактерий в себе не содержат. В чем же тогда их секрет? Метабиотики справедливо можно отнести к средствам нового поколения управления микрофлорой толстой кишки как экосистемой и метаболическим органом. Они перспективны для коррекции различных функциональных нарушений органов и систем, возникающих вследствие дисбиоза. Активные метаболиты обладают комплексом положительных эффектов: антибактериальные свойства позволяют бороться с патогенными и условно-патогенными микроорганизмами, не влияя при этом на полезную микрофлору кишечника; благодаря ферментной активности гидролитических энзимов улучшается пищеварение; усиливается иммунная защита
организма.
Их преимущества :
обладают высокой биодоступностью, т. к. метабиотические вещества доходят до толстой кишки на 95–97% в неизмененном виде (у пробиотиков — менее 0,0001%);
в отличие от пробиотических микробов не вступают в конфликт (антагонистические взаимоотношения) с собственной микробиотой пациента;
начинают действовать «здесь и сейчас».
В России терапия и профилактика дисбиотических состояний средствами на метаболитной основе еще только начинаются. В настоящее время активно ведутся разработки метабиотиков для повышения эффективности коррекции и профилактики дисбиотических нарушений. Примером подобного продукта может служить Бактистатин®.
Терапевтический эффект метабиотиков обусловлен сочетанием нескольких основных действий: способностью обеспечивать необходимые для нормального взаимодействия эпителия и микрофлоры условия гомеостаза в контактной зоне, а также прямым влиянием на физиологические функции и биохимические реакции макроорганизма, воздействием на активность клеток и биопленок. При этом стимулируется собственная микрофлора организма. Такая терапия адекватно физиологична, поскольку осуществляет регулирующее влияние на симбионтные отношения хозяина и его микрофлоры и практически сводит к минимуму возможность побочных эффектов от проводимого лечения .

Многокомпонентный комплекс Бактистатин®

Бактистатин® — уникальный запатентованный комплекс усиливающих действие друг друга природных компонентов: метабиотика, пребиотика и сорбента. Бактистатин® выпускается в форме капсул и применяется в качестве средства, восстанавливающего нормальную кишечную микрофлору и улучшающего функциональное состояние ЖКТ человека. Бактистатин® производится в соответствии с международными стандартами качества. Производитель сертифицирован по системе ISO 9001-2008. В 1999–2004 гг. группой авто-ров проводились разработка Бактистатина, отработка технологии его производства, экспериментальные и доклинические исследования. В 2004 г. Бактистатин® был зарегистрирован и вышел на рынок. С 2004 до 2011 г. осуществлялось проведение клинических исследований по оценке его эффективности.
Бактистатин® содержит (мас.%): стерилизованную культуральную жидкость, содержащую метаболиты Bacillus subtilis — 0,1–2,0%; цеолит — 68–85%; гидролизат соевой муки — 15–30%; стеарат кальция — 0,5–5,0%. Для получения основных компонентов используют следующие методы: микроорганизмы Bacillus subtilis выращивают методом глубинного культивирования, затем культуральную жидкость с микроорганизмами подвергают центрифугированию и стерилизации. Полученную стерилизованную культуральную жидкость (СКЖ), содержащую метаболиты продуцента, смешивают с гидролизатом соевой муки, стеаратом кальция и цеолитом. Образовавшуюся смесь подвергают лиофилизации, при которой происходит иммобилизация биологически активных компонентов на частицах цеолита. Последующая фасовка композиции в желатиновые капсулы обеспечивает защиту всех компонентов от воздействия факторов, вызывающих их деградацию .
Действие Бактистатина базируется на том, что при его транзитном прохождении по ЖКТ в заданной зоне происходят разрушение защитной капсулы и выделение в полость кишечника иммобилизованных на частицах цеолита компонентов пробиотика. При этом вокруг частиц цеолита формируются образования мицеллярной структуры, которые в процессе движения по ЖКТ постепенно высвобождаются с пористой поверхности цеолита. С одной стороны, это позволяет поддерживать в ЖКТ активность биологических компонентов пробиотика не менее суток, что необходимо для восстановления и стимуляции функциональной активности нормальной микрофлоры кишечника. Метаболиты Bacillus subtilis способны тормозить рост патогенной микрофлоры и стимулировать развитие нормальной микрофлоры желудка.
С другой стороны, эффект постепенного высвобождения с поверхности цеолита действующих компонентов приводит к появлению открытых поверхностей его пористой структуры, что обеспечивает включение механизмов ионного обмена и избирательной сорбции токсичных соединений. Это особенно важно для общей детоксикации организма.
Роль и значение отдельных ингредиентов, входящих в состав Бактистатина, можно определить следующим образом: некоторые штаммы Bacillus subtilis продуцируют метаболиты, проявляющие антагонистическую активность против Salmonella paratyphi, Salmonella stenly, Salmonella typhimurium, Staphylococcus aureus, Shigella sonnei, Pseudomonas aeruginosa, Proteus vulgaris, Klebsiella pneumoniae, Citrobacter freundii, Candida albicans, Campilobacter jejuni. Также при попадании в организм метаболиты Bacillus subtilis способны продуцировать 2×105 ME α2-интерферона. Таким образом, можно ожидать, что при попадании в организм метаболиты этих штаммов будут способствовать оздоровлению микрофлоры в зоне их пребывания .
СКЖ Bacillus subtilis, получаемая при глубинном выращивании этого микроорганизма, содержит уникальный набор биологически активных компонентов, вырабатываемых в процессе жизнедеятельности. Среди них широко представлены различные природные антибактериальные субстанции (бактериоцины, лизоцим, каталазы), которые селективно подавляют рост и размножение патогенных и условно-патогенных микроорганизмов в кишечнике, не влияя при этом на симбионтную микрофлору. Кроме того, микроорганизмы вырабатывают различные ферменты и коферменты, аминокислоты, полипептиды, пребиотические компоненты, способствующие улучшению микроэкологических условий в кишечнике, влияющие на обменные процессы и оказывающие иммуномодулирующее действие .
Цеолит, входящий в состав Бактистатина, обеспечивает транспортировку метаболитов в оптимальном режиме и постепенное высвобождение иммобилизованных на нем биологически активных веществ, что позволяет не менее суток поддерживать уровень активности данного средства. Вместе с тем он обеспечивает связывание и выведение низкомолекулярных токсинов (метан, сероводород, аммиак и др.), тяжелых металлов и радионуклидов. Кроме того, проходя через ЖКТ, цеолит участвует в селективном ионообмене (снимает или уменьшает негативное влияние на организм ионов алюминия, синергически взаимодействует с магнием и фтором, является дополнительным источником микроэлементов). Цеолит как источник кремния принимает участие в реакциях, обеспечивающих синтез коллагена, придает упругость волокнистым тканям; участвует в ингибировании сукцинатдегидрогеназы, эстеразы, гиалуронидазы, ускоряет синтез иролина, гликозаминогликанов; имеет особое значение для формирования структуры кожи, волос, ногтей. Содержание цеолита должно обеспечивать сорбцию всего метаболита. Существенное понижение концентрации цеолита ведет к потере части метаболитов и снижению эффективности, а содержание цеолита в концентрации более 85% приводит к разбавлению Бактистатина малоактивным ингредиентом и также к снижению его эффективности .
Гидролизат соевой муки в данном случае является, с одной стороны, частью защитной среды метаболитов, во многом отвечающей за прочность их сорбции на поверхности цеолита, а с другой стороны — источником аминокислот, обеспечивающим питательные потребности нормальной микрофлоры кишечника и клеток макроорганизма. Основным компонентом является соевый олигосахарид (SOE), обладающий бифидогенными свойствами. Он представляет собой смесь сахарозы (44%), стахиозы (23%), рафинозы (7%) и моносахаридов .
Стеарат кальция выступает в качестве структурообразователя (аэросила). Одновременно он обладает антистрессовым, антиоксидантным эффектом, присутствие соли кальция обеспечивает улучшение состояния костной системы, улучшает деятельность нервной системы .

Опыт применения Бактистатина

М.Ю. Волков и соавт., авторы изобретения, представляют ряд исследований, проведенных с использованием Бактистатина. Применение дозы Бактистатина 500 мг обеспечивает максимальное ингибирование роста
Shigella sonnei и Staphylococcus aureus in vitro. Результаты другого исследования свидетельствуют, что при внесении in vitro на питательную среду дозы 500 мг/мл происходит достоверная стимуляция роста Escherichia coli M-17. По сравнению с контрольными значениями концентраций микроорганизмов эффект увеличения их количества составляет 30%. Это позволяет считать, что для эффективной стимуляции и восстановления нормальной микрофлоры ЖКТ оптимальная доза заявляемой композиции метабиотика находится в диапазоне 400–600 мг .
Под наблюдением находилось 7 человек с целиакией.
У всех пациентов был установлен клинический диагноз глютеновой энтеропатии на основании данных клинического течения заболевания, морфометрического исследования слизистой оболочки 12-перстной кишки, иммунологического исследования крови (определение уровня антиглиадиновых антител и антител к трансглутаминазе). Бактистатин® назначался в течение 4 нед. по 2 капсулы 2 р./сут. Анализ кала на дисбактериоз проводили до лечения и на 25–31-й день после лечения. У 71,4% больных количество бифидофлоры оказалось сниженным, у 28,6% пациентов количество бифидобактерий находилось на уровне 104–105 кл/г (при норме 108–1010 кл/г). У 14,3% пациентов до лечения бифидобактерии в испражнениях не определялись. Содержание лактобактерий было ниже нормальных значений у 100% пациентов. У 42,9% больных наблюдалось снижение количества бактероидов в испражнениях, у 14,3% больных бактероиды не определялись. Выраженные изменения наблюдались в качественном и количественном составе E. coli: практически у 42,9% пациентов не определялась кишечная палочка с нормальными ферментативными свойствами, у 42,8% больных ее количество было снижено, только у 14,3% пациентов количество кишечной палочки было достаточным. 42,9% от всего количества E. coli составили эшерихии с измененными ферментативными свойствами (в норме — не более 10%).
У 14,3% больных в испражнениях были обнаружены дрожжеподобные грибы рода Candida. Отмечалось увеличение количества клостридий у 14,3% больных, количество которых достигало 108. На фоне приема Бактистатина отмечалось значительное улучшение показателей как анаэробной флоры, так и аэробной составляющей. Отмечалось увеличение количества бифидобактерий и лактобактерий у 57,1% пациентов, бактероидов — у 42,9%; улучшились показатели Е. coli — увеличение количества эшерихий с нормальной ферментативной активностью наблюдалось у 85,7% больных. У больных процент кишечной палочки с измененными свойствами снизился с 42,9% до 28,6%. После проведенной терапии на 14,3% уменьшилось количество гемолитических организмов, условно-патогенных бактерий, дрожжеподобных грибов Candida и клостридий .
М.К. Бехтерева и соавт. провели открытое сравнительное контролируемое исследование, в которое были включены 50 пациентов в возрасте от 6 до 18 лет со среднетяжелой формой ОКИ бактериальной этиологии. Дети были госпитализированы с 1-го по 4-й день болезни, большинство — в первые 2 сут (70% случаев (35 пациентов)). Одна из групп (n = 25) получала помимо базисной терапии Бактистатин® по 1 капсуле 2 р./сут в течение 7 дней в острый период заболевания на фоне базисной терапии.
Изучение клинического течения инвазивных диарей у обследованных детей показало, что включение в комплексную терапию Бактистатина способствовало сокращению продолжительности основных проявлений заболевания. Так, в группе пациентов, получавших Бактистатин®, отмечалось достоверное уменьшение длительности лихорадочного периода, раньше купировались боли в животе и диарейный синдром по сравнению с таковыми показателями у детей из группы сравнения. Наиболее значимым эффектом применения Бактистатина при инвазивных ОКИ было сокращение частоты назначения антимикробной терапии в группе пациентов, лечившихся Бактистатином, — до 48% против 76% в группе сравнения (р<0,05). Кроме этого, включение Бактистатина в комплексную терапию инвазивных ОКИ приводило к снижению частоты негладкого течения болезни (суперинфекция, обострение) и способствовало более редкому формированию реконвалесцентного бактериовыделения. В группе пациентов, получавших Бактистатин®, реконвалесцентное бактериовыделение формировалось в 8% случаев против 20% в группе сравнения (р>0,05). В группе детей, получавших Бактистатин®, негладкого течения заболевания не наблюдалось, в то время как в группе сравнения негладкое течение (обострение) отмечено у 16% детей (р<0,05). Выявлено, что использование Бактистатина не только приводило к более раннему купированию основных симптомов заболевания, но и имело доказанный эффект, выражающийся в изменении микробиоценоза толстой кишки за счет увеличения доли облигатной и факультативной микрофлоры и уменьшения числа условно-патогенных бактерий .

В.В. Павленко и соавт. изучали эффективность Бактистатина в комплексной терапии 30 больных (из них мужчин — 18, женщин — 12) язвенным колитом (ЯК) различной тяжести с синдромом кишечного дисбактериоза. Средний возраст пациентов составил 37,4±5 лет. Боль-ные ЯК были выделены в 2 группы. 1-я группа (15 пациентов) получала базисную терапию (месалазин, преднизолон, азатиоприн) в сочетании с Бактистатином по 1 капсуле 2 р./сут 3 нед. 2-я группа больных получала только базисную терапию. Группу сравнения (3-я группа) составили 10 больных с билиарнозависимым хроническим панкреатитом. Возраст пациентов в группе сравнения составил 40,3±4 года (соотношение мужчин и женщин 2:1). Эти пациенты получали заместительную ферментную терапию (панкреатин, спазмолитики, антисекреторные препараты в рекомендованных дозах + Бактистатин® по 1 капсуле 2 р./сут). Лабораторно-инструментальные исследования проводили до и после применения Бактистатина, в среднем через 3 нед.
С целью изучения влияния Бактистатина на микрофлору кишечника исследуемых пациентов распределили по степени выраженности дисбиоза, используя классификацию дисбактериоза по В.Н. Красноголовцу. У всех исследуемых пациентов был выявлен дисбиоз преимущественно 1-й, 2-й и 3-й степени. В 1-й и 3-й группах пациентов на фоне приема Бактистатина отмечено значительное снижение степени выраженности дисбактериоза или его полное исчезновение (при 1-й степени в сравнении со 2-й группой) (р<0,05). После приема Бактистатина у пациентов 1-й группы и группы сравнения отмечались увеличение (или нормализация) количества облигатной флоры (бифидо- и лактобактерий), уменьшение неполноценной и гемолизирующей кишечной палочки, клостридий. В то же время во 2-й группе пациентов отмечалась слабоположительная динамика нормализации кишечного микробиоценоза в отсутствие пробиотика в комплексной терапии (р<0,05). Таким образом, совместное использование базисных препаратов и Бактистатина при ЯК и билиарнозависимом панкреатите существенно повышало эффективность лечения этой патологии ЖКТ .
Э.П. Яковенко и соавт. изучали эффективность Бактистатина в лечении постинфекционного синдрома раздраженного кишечника (ПИ-СРК). Обследовано 40 пациентов с ПИ-СРК. Для оценки микрофлоры кишечника проводились посевы кала и водородный дыхательный тест. К концу 4-недельного курса Бактистатина была достигнута устойчивая клиническая ремиссия ПИ-СРК. В посевах кала снизились уровни условно-патогенной микрофлоры, повысилось до нормы количество бифидо- и лактобактерий, нормализовались показатели водородного дыхательного теста (р<0,05). Бактистатин® оказывает хорошее терапевтическое действие при лечении больных ПИ-СРК, способствует восстановлению нормальной кишечной микрофлоры и улучшению клинических симптомов (р<0,05). Применение Бактистатина приводило к восстановлению фекальной кишечной микрофлоры, устранению синдрома избыточного бактериального роста в тонкой кишке, адсорбции раздражающих субстанций и газов в кишке, улучшению кишечного пищеварения, повышению порога болевой чувствительности, купированию болевого синдрома, нормализации моторики кишечника и стула .

Заключение

Таким образом, Бактистатин® проявил себя как средство с многогранной клинической эффективностью и в настоящее время рекомендован в схемах терапии при лечении больных, имеющих дисбактериоз кишечника различного генеза: при хронических заболеваниях пищеварительного тракта, после перенесенных острых кишечных инфекций, на фоне и после приема антибиотиков, после проведения химиотерапии, на фоне длительной гормональной терапии, в условиях хронических стрессовых состояний, при нерациональной диетотерапии.
Использование Бактистатина значительно снижает выраженность диспептических расстройств, улучшает кишечное пищеварение, эффективно гармонизирует состав кишечного микробиоценоза, оказывает иммуномодулирующее действие, положительно влияет на психологический статус больных и способствует повышению качества их жизни. Бактистатин® не имеет противопоказаний и не вызывает побочных эффектов. Не следует его назначать при индивидуальной непереносимости компонентов. В большинстве случаев другие лечебные и оздоровительные средства (антибиотики, витамины, ферменты, микроэлементы и т. д.) при применении этого средства не нужны, т. к. уже содержатся в их составе и (или) заменяются аналогичными по своему действию.
Сфера применения Бактистатина постоянно расширяется. Уже сейчас его используют в схемах лечения и профилактики дисбиозов различного происхождения, в т. ч. на фоне антибиотикотерапии, заболеваний ЖКТ, инфекционно-воспалительных, аллергических, дерматологических, сердечно-сосудистых заболеваний, болезней обмена и др. Важно, что применение Бактистатина не только позволяет добиться восстановления эубиоза, но и способствует улучшению результатов лечения основного заболевания.

Спасти огурцы от мучнистой росы, защитить корнеплоды от гнили, повысить иммунитет огородных культур, провести оздоровление почвы и «почистить» ее от возбудителей различных болезней, — все это помогут сделать препараты на основе сенной палочки.

Грибок и гниль – верные спутники холодного и сырого климата. Кто-то спасает культуры бордоской смесью. Правда, этот метод не назовешь безвредным. А кто-то ищет более безопасные и менее токсичные варианты. И такие действительно существуют, например, препараты на основе сенной палочки.

Бактерию Бациллюс субтилис (Bacillus subtilis), известную также как сенная палочка, дачники с любовью окрестили «палочкой-выручалочкой». Происхождение названия этого микроорганизма объясняется тем, что ранее его получали исключительно из сенных отваров. Это подвижные бактерии, которые выживают в широком температурном диапазоне (от –5°С до 150°С), хотя комфортнее всего они чувствуют себя при температуре от 25°С до 30°С. Для нормального протекания процессов жизнедеятельности Bacillus subtilis нуждается в атмосферном кислороде. Хотя некоторые штаммы являются факультативными анаэробами.

Сенная палочка помогает защитить урожай от гнилей, а также многих грибковых и бактериальных заболеваний. По сути, это не что иное как природный антибиотик. Бактерия продуцирует ряд ферментов, за счет которых удаляются продукты гнилостного разложения. В результате ее метаболизма синтезируются аминокислоты и витамины, которые идут на пользу растениям. Еще одно важное свойство Bacillus subtilis заключается в том, что она является антагонистом дрожжевых грибков, сальмонеллы, стафилококков, стрептококков и других патогенных микроорганизмов.

Какие результаты дают препараты на основе сенной палочки?

Зная полезные свойства сенной палочки, вы сможете использовать биофунгициды для решения следующих задач.

  • Профилактика и лечение на начальных стадиях заболеваний грибкового характера (в т.ч. гнилей) сельскохозяйственных культур и комнатных растений.
  • Оздоровление почвы за счет восстановления ее микрофлоры и снижения процента токсинов после пропаривания или обработки средствами химической защиты.
  • Улучшение качества плодов благодаря способности сенной палочки увеличивать содержание аскорбиновой кислоты и белка в продукции на 20-30%, а также снижать уровень нитратов на 25-40%.
  • Стимулирование развития защищаемых культур, а именно: увеличение высоты стебля, количества завязей, ускорение сроков созревания.

Вот неполный перечень болезней, профилактика и лечение которых может осуществляться с помощью препаратов сенной палочки: альтернариоз, бактериальная и белая пятнистости, бактериоз, бурая ржавчина, монилиальный ожог, мучнистая роса, парша, пероноспороз, ризоктониоз, снежная плесень, трахеомикоз, фитофтороз, фомоз, церкоспороз, а также различные гнили (белая, серая, черная сухая, плодовая, сухая, фузариозная и др.).

К основным способам применения препаратов на основе Bacillus subtilis относятся:

  • замачивание семян, клубней и луковиц, а также обработка корней рассады;
  • лечебное и профилактическое опрыскивание листовой части;
  • полив под куст в период вегетации;
  • обработка почвы (полив в лунку) перед высадкой рассады;
  • обеззараживание почвы и компоста (в т.ч. в парниках);
  • обработка погребов, парников, а также самих овощей перед закладкой урожая на хранение.

Как в целях профилактики, так и при лечении листья культур опрыскиваются с двух сторон.

Препараты, в составе которых есть сенная палочка, и их преимущества

Сенная палочка имеет много штаммов (штамм – культура генетически однородных микроорганизмов, полученных в лабораторных условиях). При этом каждый штамм обладает особыми свойствами, которые ученые используют для разработки микробиологических препаратов в виде порошка, суспензии, пасты или таблеток. Перечислим наиболее известные из них.

Препарат Форма выпуска Вид штамма Bacillus subtilis и добавки
Алирин-Б порошок, таблетки штамм ВИЗР-10
Бактофит порошок, суспензия штамм ИПМ 215
Гамаир порошок, таблетки штамм М-22 ВИЗР
ФитоДоктор порошок, суспензия штамм LZ12 с живыми клетками и продуктами их метаболизм
Фитоспорин-М порошок, паста, суспензия штамм 26 Д с гуминовыми кислотами

Важный «плюс» биофунгицидов на основе сенной палочки заключается в том, что это не опасная «химия», следовательно, обработка ими не представляет особой угрозы для здоровья человека. Среди прочих достоинств отметим следующие:

  • высокие фунгицидные свойства, подавляющие жизнедеятельность возбудителей грибковых и бактериальных заболеваний (особенно на ранних стадиях, а также при проведении профилактических мероприятий);
  • стимуляция роста, благодаря чему сокращается время прорастания семян и появления всходов;
  • обеззараживание семян и луковиц от патогенов и условных патогенов;
  • возможность обрабатывать культуры в целях их защиты на протяжении всего периода вегетации, в то время как пестициды и другая «химия» имеют строгие ограничения по срокам использования;
  • увеличение урожайности садово-огородных культур на 20-30%;
  • возможность снизить себестоимость сельскохозяйственной продукции за счет исключения применения дорогостоящих химических препаратов;
  • отсутствие срока ожидания: плоды можно срывать и употреблять в пищу сразу после обработки.

При всех достоинствах стоит отметить и существенный недостаток бактерии сенной палочки. В отличие от химических фунгицидов, она имеет непродолжительный срок действия и быстро теряет свои свойства на воздухе. Поэтому применять растворы на ее основе нужно несколько раз за сезон.

Готовим препарат на основе сенной палочки своими руками

Препараты на основе сенной палочки можно купить, а можно произвести самостоятельно. Причем для этого не придется прилагать слишком много усилий или тратить уйму времени, т.к. весь процесс довольно прост и понятен.

Для приготовления настоя вам понадобятся лишь прелое (но не покрытое плесенью!) сено из злаковых трав, вода и немного мела.

  1. Заготавливаем сено. Для настоя нужно прелое сено, или сенная труха. Чтобы получить его, положите охапку сухой травы в тень и периодически смачивайте ее водой. Через 2-3 недели выберите труху, на которой нет плесени, и измельчите ее ножницами.
  2. Готовим маточную культуру. Добавьте в 1 л воды 1 ч.л. мела и 100-150 г сена, доведите до кипения и подержите на огне еще 20 минут. Это убьет все микробы, кроме самой сенной палочки, которая не боится кипячения. Оставьте отвар в теплом месте на 3-4 дня, чтобы присутствующие в нем споры бактерии проросли (когда это случится, на поверхности отвара появится пленочка).
  3. Готовим настой. Залейте 1 кг сена 5 л воды, добавьте 5 ст.л. извести и подготовленную маточную культуру. Накройте крышкой и оставьте в тепле примерно на 3-4 суток. О готовности свидетельствует пленочка сенной палочки на поверхности настоя.

Есть и еще один способ порадовать свои грядки сенной палочкой. Суть заключается в мульчировании. Под слоем мульчи создаются оптимальные условия для сенной палочки – темнота, влага и умеренная температура, а также всегда есть разлагающаяся органика, которой «питается» бактерия.

***

В борьбе с грибковыми заболеваниями препараты с сенной палочкой по эффективности уступают химическим фунгицидам. И если культуры уже сильно поражены плесенью или гнилями, спасти их вряд ли удастся. Однако польза сенной палочки как средства профилактики или решения проблемы на самых ранних стадиях не вызывает сомнений.

Сенная палочка – полезные свойства, использование

Сенная палочка была открыта еще в 1835 г. Именно тогда ее впервые экстрагировали из отвара прелого сена. Отсюда и название.

На сегодняшний день сенная палочка является одним из наиболее изученных микроорганизмов. В ходе научных исследований подтверждено ее биологическое, медицинское, и хозяйственное значение.

Свойства

Латинское название сенной палочки – Bacillus subtilis. Представляет собой палочковидную бактерию продолговатой формы с закругленными краями. Благодаря многочисленным жгутикам способна передвигаться. В этом отношении является перитрихом – жгутики расположены по всей поверхности бактерии.

Длина бактерий составляет 3-8 мкм, а толщина – 0,4-0,6 мкм. Благодаря таким относительно крупным размерам сенная палочка хорошо видна в микроскоп.

В лабораторных условиях бацилла произрастает на жидких и плотных питательных средах – на мясопептонном бульоне и мясопептонном агаре. На жидких средах образуют колонии в виде тонких беловатых пленок. Колонии на плотных средах имеют вид серых, бесцветных или розовых бархатистых образований с волнистыми краями.

Нахождение в природе

В естественных условиях сенная палочка является аэробом, сапрофитом и гетеротрофом. Говоря простым языком, это означает, что бактерия растет и размножается только в присутствии кислорода. Хотя некоторые бактериальные штаммы являются факультативными анаэробами – могут развиваться в бескислородной среде.

Будучи сапрофитом, сенная палочка не питается живыми тканями, а лишь отмершими органическими остатками. Как и всякий гетеротроф, палочка не в состоянии самостоятельно синтезировать органические соединения из неорганических. Для поддержания жизнедеятельности микроорганизму нужно готовое органическое сырье.

Оптимальный для жизнедеятельности температурный режим находится в диапазоне +5-450С. При таких условиях бактерия размножается и растет. Размножение осуществляется путем продольного деления. После деления дочерние бактерии остаются соединенными тонкими нитями. Из-за этого бактериальные скопления имеют вид тонких нитевидных образований.

При неблагоприятных условиях, например, при нагревании, сенная бацилла способна образовывать споры. Спорообразование происходит в несколько этапов. Вначале внутри бактериальной клетки, в т.н. протопласте, формируется зернистость. В последующем из множества зерен выделяется одно, наиболее крупное. Это и есть будущая спора.

Затем под влиянием неблагоприятных факторов бактериальная оболочка разрушается. Бактерия погибает, а спора выходит во внешнюю среду. Она имеет вид округлого или овоидного образования, окруженного оболочкой. В дальнейшем спора при оптимальных условиях трансформируется в бактерию. Правда, образовавшиеся непосредственно из спор бактерии не могут передвигаться. Но у их дочерних клеток такая способность возобновляется.

Сенную палочку относят к почвенным микроорганизмам. Действительно, ее содержание в почве в виде бактериальных клеток и спор довольно велико. Из почвы бактерия контактным путем или с водой и пылью распространяется на растения, а с растениями в качестве корма попадает в организм животных. Возможно и прямое обсеменение палочкой продуктов растительного или животного происхождения.

Биологическое значение

Биологическим сырьем для жизнедеятельности, или, образно говоря, пищей для микробов, служат белковые соединения и полисахариды (гликоген и крахмал). Для расщепления белков палочка вырабатывает ферменты-протеазы, а для расщепления полисахаридов – ферменты-амилазы.

Попадая в кишечник животных вместе с растительной пищей, бактерии расщепляют пищевые ингредиенты. Но этим их биологическая роль не ограничивается. Дело в том, что сенная бацилла подавляет рост патогенных (болезнетворных) микроорганизмов, и тем самым предотвращает развитие кишечных инфекций. В растениях сенная палочка тоже играет позитивную роль. Бактерия защищает здоровые растительные ткани от губительного действия плесневых грибков и других микроорганизмов.

Это одна из причин, почему некоторые животные, например, кошки и собаки, не являясь травоядными, периодически употребляют в пищу травянистые растения. Так они не только насыщаются растительной клетчаткой и витаминами, но и оздоравливаются с помощью сенной палочки.

А еще эта бацилла является низшим звеном пищевой цепочки. Ее поглощает представитель простейших, инфузория-туфелька. В свою очередь, инфузория идет в пищу моллюскам. Моллюски – это корм для рыбы, а рыба – еда для человека.

Использование

В общих чертах сенная палочка на человека действует так же, как и на животных. Расщепляя компоненты пищи в кишечнике, бактерия насыщает наш организм сахарами и аминокислотами. Помимо этого она в составе физиологической микрофлоры кишечника синтезирует ряд витаминов группы В. Причем многие из аминокислот, образующиеся при разложении белков под действием протеолитических ферментов, являются для нас незаменимыми.

А еще бактерия способствует омоложению. Суть омолаживающего действия заключается в том, что в процессе жизнедеятельности сенные бациллы выделяют оксид азота , NO. Это соединение поступает в клетки тканей, и оптимизирует обменные процессы.

Патогенную микрофлору кишечника сенная палочка подавляет. При этом она укрепляет иммунитет, и повышает противовирусную и антибактериальную защиту на уровне всего организма.

Примечательно влияние Bacillus subtilis на течение раневого процесса. В ранах, полученных во внебольничных, нестерильных, условиях, всегда присутствует эта бактерия. Она закисляет тканевую среду, и тем самым затрудняет размножение патогенных микробов. Под действием протеолитических ферментов, выделяемых бактерией, разлагается гной и другие продукты тканевого распада. В результате рана очищается, обеззараживается, и заживает быстрее. Разумеется, сенную палочку ни в коей мере не следует рассматривать как альтернативу антисептическим средствам. Но при ранениях, полученных в полевых условиях, она может оказаться полезной.

Хотя в отдельных случаях сенная бацилла способна принести вред. Инфицирование роговицы и склеры при ранениях глаза сопровождается тяжелым воспалением. Прием пищевых продуктов, зараженных сенной палочкой, приводит к тяжелому отравлению по типу пищевого токсикоза. Поступление в организм бактериальных антигенов сенной палочки иногда провоцирует аллергические реакции.

Правда, аллергии на компоненты этого микроорганизма возникают редко, и, как правило, протекают в виде крапивницы. По некоторым данным наличие сенной палочки в кишечнике усугубляет имеющийся гельминтоз. Ведь расщепленные компоненты пищи служат питательной средой для кишечных паразитов.

И все-таки в Bacillus subtilis больше плюсов, чем минусов. Сама по себе бактерия не вызывает заболеваний, и не является патогенной. Опасения по поводу того, что сенная бацилла по конкурентному принципу вытесняет молочнокислые бактерии, и в виде спор колонизирует кишечник, беспочвенны. Эта палочка не является компонентом естественной микрофлоры кишечника, и по большому счету является чужеродной. Спустя месяц после поступления она выводится из организма.

Безопасность данного микроорганизма подтверждают авторитетные источники. Так, американское Управление по надзору за качеством пищевых продуктов и лекарств отнесло Bacilus subtilis в категорию безопасных организмов. На основе сенной бациллы создан ряд фармацевтических средств и БАДов. Среди них – Биоспорин, Бактиспорин, Споробактерин. Данные средства применяют в качестве иммуномодуляторов, пробиотиков, пищеварительных ферментов.

В Японии сенную палочку используют для ферментации соевых бобов. Таким способом получают пищевой продукт под названием натто. Низкокалорийный натто является источником питательных веществ (нутриентов), уменьшает холестерин, снижает риск онкозаболеваний, и обладает другими целебными свойствами.

Натто

Препараты сенной палочки используют в ветеринарии и животноводстве. В растениеводстве их применяют для защиты культур от патогенных грибков и бактерий. Здесь в сравнении с ядохимикатами безопасная сенная палочка имеет явные преимущества. Полученные из культур сенной бактерии ферментные соединения идут на изготовление моющих средств, препаратов для выделки шкур.

Сенная палочка представляет не только медицинский и хозяйственный, но и научный интерес. Ее используют в генно-молекулярных исследованиях. На примере этой спорообразующей бактерии изучается влияние на живые организмы космического ультрафиолетового излучения и других экстремальных факторов.

Дата публикации: 2019-06-11
Последнее изменение: 2020-01-16

Сенная палочка: свойства и характеристика, взаимодействие с человеком, роль

Сенная палочка — сапрофитный микроб, вызывающий большой интерес у микробиологов по причине повсеместного распространения, особенностей развития и необычной устойчивости спор к физико-химическим агентам. Латинское название бактерии – Bacillus subtilis. Изучением и описанием ее свойств в 1835 году занимался Эренберг, а в 1872 году Кон. Впервые микробы были выделены из прелого сена. Его экстракт необходим для накопления чистой культуры. Сено варили и выдерживали три дня, после чего в нем обнаруживали бактериальные клетки. Благодаря такой особенности палочка и получила свое название. Bacillus subtilis продуцирует некоторые антибактериальные вещества, полисахариды, аминокислоты и ферменты, а также целый набор химических микроэлементов – соединений азота, фосфора, калия в сбалансированном виде.

По своей микробиологической сущности сенная палочка является крупной бактериальной клеткой, которая положительно окрашивается по Грамму, растет и размножается в присутствии кислорода. Она обитает в почве и обладает способностью образовывать споры. Это безопасный микроорганизм, не обладающий патогенными свойствами.

Молекулярно-биологические и структурно-функциональные особенности сенной палочки давно и подробно изучены. Бактерия относится к классу бацилл, семейству бацилиас, роду бацилус. Микроорганизмы, объединенные в вид бацилус субтилис, имеют ряд отличительных свойств: морфологических, тинкториальных, физиологических, культуральных, метаболических, биохимических.

  • Bacillus subtilis (споры окрашены в синий цвет)

    Морфология. Bacillus subtilis – палочка, геном которой представлен кольцевой двуцепочечной ДНК. Штаммы бактерий отличаются сочетанием генов, кодирующих синтез антибиотиков, клеточной стенки и отвечающих за процесс споруляции и прорастания спор. Микроорганизм имеет прямую, слегка вытянутую форму с тупыми закругленными концами. Эта достаточно крупная палочка бесцветна. Овальные споры располагаются центрально. Их размер не превышает диаметр клетки. Бактерия благодаря перитрихиально расположенным жгутикам обладает подвижностью.

  • Тинкториальные свойства. Клетки хорошо воспринимают обычные анилиновые красители. Микроорганизмы окрашиваются по Грамму в синий цвет — являются грамположительными. Под микроскопом бактерии имеют вид тонких нитевидных образований. В мазке бациллы располагаются по-разному — одиночно, скоплениями или длинными цепочками.
  • Физиология. Бактерии распространены повсеместно. Они являются обитателями почвы, воздушной пыли и воды. Из почвы бациллы контактным путем распространяется на растения, с которыми в виде корма попадают в организм животных. Возможно и прямое обсеменение продуктов растительного или животного происхождения. Сенная палочка — представитель биоценоза кишечника здорового человека, препятствующий росту и размножению таких опасных микробов, как сальмонелла, протей, энтеробактер, стафилококк. Хищные животные, поедая растительную пищу, не только обогащают свой организм клетчаткой и витаминами, в него попадают споры сенной палочки, которые предупреждают развитие инфекционного процесса и укрепляют иммунитет. Размножение бактерий происходит путем простого бинарного деления с образованием двух дочерних клеток, между которыми сохраняется тонкая нить. Микробы также способны плодиться споровыми формациями.
  • Метаболизм. Бацилла — сапрофит, питающийся мертвыми органическими веществами. Бактерии относятся к группе гетеротрофов, которые не могут продуцировать пищу самостоятельно. Источником энергии для сенной палочки являются природный и животный углеводы — крахмал и гликоген соответственно. Микробы аммонифицируют белки и синтезируют органические кислоты, микроэлементы, витамины, ферменты.
  • Споруляция. Способность Bacillus subtilis к спорообразованию помогает ей выжить в критической обстановке. Эндоспоры выдерживают экстремальные температуры и сухие среды. Процесс образования спор довольно сложный. Структура клетки приобретает некоторую зернистость. Самое крупное зернышко непрерывно растет и покрывается плотной оболочкой. Это будущая спора. Негативное воздействие различных факторов приводит к разрушению наружной микробной оболочки. Бактериальная клетка погибает, а спора выходит во внешнюю среду. При оптимальных условиях она трансформируется в неподвижную активную бактерию, которая начинает работать – защищать почву и растения от болезней. Споры резистенты к нагреванию до 100°С и более. При кипячении сена, из которого выделяют Bacillus subtilis, они не погибают.
  • Культуральные свойства. Сенная палочка растет в аэробных условиях в большом диапазоне температур — от +5 до +45°С. Температурный оптимум для бактерии — 20-30°С. Некоторые штаммы не нуждаются в кислороде и являются факультативными анаэробами. На плотных питательных средам образуются сухие, мелкие, морщинистые, бархатистые колонии с волнистым краем розового, серого цвета или полностью прозрачные. На поверхности жидких сред после инкубации появляется тонкая пленка с беловатым налетом, а на дно пробирки выпадает осадок. Бактерии неприхотливы и хорошо растут на простом агаре, в бульоне, на средах с растительными остатками и синтетических питательных средах для гетеротрофов. Для самостоятельного выделения бактерий необходимо прокипятить сено и выдержать полученный отвар в тепле двое суток. На поверхности настоя вскоре появится пленка, состоящая исключительно из бактерий.
  • Биохимия. Бацилла расщепляет некоторые сахара, накапливает ацетоин — продукт анаэробного превращения глюкозы, разлагает полисахариды и белки до простых мономеров, разжижает желатин, продуцирует каталазу и лецитиназу, участвует в процессе денитрификации, дает положительную реакцию с цитратом натрия, образует аммиак и сероводород.
  • Антибиотикорезистентность. Микроорганизмы устойчивы к антибиотикам из группы полимиксина, рифампицина, линкозамидов, пенициллина.

Сенная палочка не является патогенным микроорганизмом. Она относится к группе санитарно-гигиенических показателей загрязнения пищевых продуктов.

Биологическая роль

Сенная палочка играет важную роль в жизнедеятельности животных и человека. Она выполняет целый ряд функций:

  1. Пищеварительная — бактерия, попадая в живой организм вместе с растительной пищей, продуцирует в кишечнике ферменты, которые расщепляют пищевые ингредиенты: протеазы ферментируют белки, амилазы – полисахариды.
  2. Антагонистическая – подавление роста болезнетворных микробов в кишке и профилактика острых кишечных инфекций. Споры сенной палочки в толстом кишечнике превращаются в активные формы, которые вырабатывают органические кислоты. Они изменяют рН среды, тем самым, подавляя рост патогенных и условно-патогенных микроорганизмов.
  3. Защитная – сенная палочка защищает растения от плесневых грибков и других вредных микроорганизмов.
  4. Сенная палочка является низшим звеном длинной пищевой цепочки, включающей простейших, рыб, человека.
  5. Бактерия насыщает живой организм сахарами и незаменимыми аминокислотами, которые образуются в ходе целого ряда химических реакций, протекающих под воздействием ферментов сенной палочки.
  6. Витаминообразующая — участие бактерии вместе с другими представителями микрофлоры кишечника в синтезе витаминов группы В.
  7. Омолаживающая – сенные бациллы выделяют оксид азота, который поступает в клетки и ускоряет обмен веществ в тканях.
  8. Иммуномодулирующая – укрепление иммунитета и повышение неспецифической резистентности организма человека.
  9. Противомикробная — бактерии подавляют размножение и вызывают гибель возбудителей гнойной инфекции.
  10. Bacillus subtilis оказывает позитивное влияние на течение раневого процесса: она изменяет рН среды в кислую сторону, подавляет размножение патогенных микробов, расщепляет гной и продукты распада, очищает и обеззараживает рану, в результате чего она быстрее заживает.

цикл развития сенной палочки

B.subtilis продуцирует ряд биологически активных веществ, эффективно уничтожающих бактериальные, вирусные и грибковые клетки. Причем устойчивость к данным противомикробным средствам возникает крайне редко. Они обладают избирательным действием, вызывая гибель условных и безусловных патогенов. Антимикробные вещества являются нейтральными по отношению к аутохтонной полезной микрофлоре. Бактерии стимулируют иммунитет путем активации клеток макрофагального звена, выброса цитокинов в кровь, секреции витаминов и аминокислот. Лимфоциты, активизируясь, вырабатывают IgG и IgA. В кишечнике ускоряется рост и размножение «полезных» микроорганизмов – лактобактерий и бифидобактерий. Протеолитические ферменты, синтезируемые прямо в кишке, улучшают процессы пищеварения и всасывания образовавшихся питательных веществ.

Все эти механизмы действия сенной палочки в организме человека делают обоснованным ее применение для:

  • Лечения кишечных инфекций и дисбактериоза,
  • Профилактики респираторных инфекций,
  • Коррекции пищеварительных расстройств различного генеза.

B.subtilis не вызывает побочных эффектов, являясь довольно эффективным и практически безопасным микроорганизмом.

Не смотря на такое многообразие положительных свойств сенной палочки, существуют и негативные моменты для человека, из-за которых некоторые ученые относят бактерию к группе условно-патогенных.

  1. Бактерия при инфицировании роговицы и склеры приводит к развитию тяжелого воспаления.
  2. Сенная палочка вызывает порчу некоторых пищевых продуктов и отравление у людей, употребивших их.
  3. Bacillus subtilis — причина аллергических реакций, протекающих по типу крапивницы.
  4. Бацилла, расщепляя компоненты пищи, усугубляет течение кишечного гельминтоза. Паразиты получают достаточное количество питательных веществ и активизируют процессы своей жизнедеятельности.

Сенная палочка не вызывает смертельно опасных заболеваний у человека. Она относится к транзиторной микрофлоре кишечника. Спустя месяц после поступления в организм, она самостоятельно выводится. Авторитетные американские ученые отнесли Bacillus subtilis в категорию безопасных организмов. Но не смотря на это, нельзя допускать появления бациллы в рыбных, мясных и растительных консервах. Если в них оказались жизнеспособные споры, значит при благоприятной температуре начнут размножаться микроорганизмы. Этот процесс можно заметить визуально — по наличию серого налета, неприятного запаха и консистенции продукта. Чтобы избежать подобных проблем, необходимо соблюдать все технологии и нормативы приготовления консервов.

Значение и применение

Огромное значение имеет Bacillus subtilis в различных отраслях промышленности. Сенная палочка представляет медицинский, хозяйственный и научный интерес. Она является сельскохозяйственным и защитным инструментом.

  • Ферменты, синтезируемые ею, используют при производстве моющих средств, которые удаляют жир и белки в процессе обработки шкур.
  • Сенная палочка обладает антагонистическими свойствами против фитопатогенов, что широко применяется в биологической защите растений.
  • Бактерии являются основным действующим веществом некоторых медикаментов, имеющих антимикробную направленность, а также пробиотиков и иммуномодуляторов. С помощью различных штаммов сенной палочки были получены лекарства для лечения инфекций, вызванных энтеробактериями, а также кишечного дисбиоза, гнойных осложнений у детей и лиц, которым запрещен прием антибиотиков. Наиболее популярные препараты – «Споробактерин», «Бактиспорин», «Биоспорин».
  • Защита растений от бактериальных и паразитарных болезней осуществляется с помощью препаратов на основе палочки, абсолютно безвредных для человека – «Алирин-Б», «Гамаир», «Фитоспорин». Не зря дачники прозвали бациллу «палочкой-выручалочкой». Этот природный антибиотик защищает урожай от гнили. Ферменты, синтезируемые микробом, расщепляют продукты гниения, а аминокислоты и витамины, образующиеся в результате жизнедеятельности бактерии, идут на пользу растениям. В сравнении с ядохимикатами безопасная сенная палочка имеет явные преимущества.
  • Сенная палочка представляет особый интерес с точки зрения экологической безопасности. В настоящее время ведутся работы, оценивающие состояние окружающей среды экотопа, в котором распространен этот уникальный микроорганизм. Его применение – основной метод борьбы с отходами в рамках «зеленой» экономики.
  • Отдельные штаммы Bacillus subtilis применяют в кулинарии. Их используют для ферментации овса и бобов. Сброженные соевые бобы – основа национальных блюд в Японии.
  • С помощью микробов проводят сложные молекулярно-генетические исследования, целью которых является изучение влияния космического ультрафиолета и других экстремальных факторов на живой организм.

Представители рода Bacillus имеют ряд характерных особенностей и отличаются от других бактерий основными морфолого-физиологическими признаками – палочковидной формой, способностью к спорообразованию, потребностью в свободном кислороде. Это свободноживущие, одноклеточные, нефотосинтезирующие аэробы.

Сенная палочка — безвредный для человека микроорганизм, который широко применяется в различных отраслях медицины, промышленности, хозяйства. Благодаря высокой активности продуцируемых ферментов она регулирует и стимулирует работу ЖКТ. Бактерия оказывает противовирусное, антиаллергенное, противоонкогенное и дезинтоксикационное действие. Она не теряет своих свойств при хранении и позволяет использовать в процессе производства более экономичные технологии. Палочка обладает устойчивостью к некоторым антибиотикам, ферментам, широкому температурному диапазону. Bacillus subtilis является экологически безопасным организмом. Современные ученые-микробиологи вырастили множество штаммов этой бациллы с вполне определенными качествами.